

EIFELER coatings characteristics & applications

		material	microhardness HV 0.05	friction coefficient against 100Cr6 steel	layer thickness [µm]	max. working temperature	coating temperature	colour	delivery time	general characteristics	preferred applications	special*
	TiN	titaniumnitride	2300 ± 300	0.6	2 - 4	500°C	~ 450°C	gold	2-3 WD	allround-coating, biocompatible	processing and machining of iron-based materials metal forming plastic molding decoration - visual refinement medical technology food industry	D (N
	TiCN	titaniumcarbon- nitride (multi layers)	3500 ± 500	0.2	2 - 4	400°C	~ 450°C	blue-grey	2-3 WD	high degrees of hardness, excellent wear resistance, improved toughness	machining of hard to steel alloys high-performance machining - if moderate temperatures arise at the cutting edges excellent for metal forming (e.g. stainless steel)	
V	ARIANTIC	titanium- aluminium- carbonnitride (multi layers)	3500 ± 500	0.2	2 - 4	800°C	~ 450°C	antique-pink	2-3 WD	high oxidation resistance	all types of steel for dry, lubricated, MQL or wet processing conditions excellent for drilling into steel drawing, punching/stamping, pressing and forming tools for the machining of high and low alloy steels	D
	CrCN CrN	chromium- carbonnitride chromiumnitride	2000 ± 200	0.3 - 0.4 0.2 - 0.3	2 - 6	600°C	~ 450°C	silver-grey	2-5 WD	low tension, high adhesive quality, high corrosion resistance	metal forming plastic processing (improved demolding) die-cast aluminum and magnesium machining of non-ferrous metals	0
	wcc	tungstencarbide- carbon a-C : Me	1000 - 2200	0.2 - 0.25	2 - 5	400°C	350 - 450°C	anthracite	2-5 WD	high gliding properties, low adhesive wear	precision components punching & forming, MQL or dry machining plastic injection moulding wery well suited for parts sliding against each other (e.g. slides) machining of galvanised sheet metal	0
	ZrN	zirconiumnitride	2800 ± 300	0.5	2-4	600°C	~ 450°C	light yellow	2-3 WD	high degrees of hardness, pleasing color, excellent corrosion & wear resistance, very smooth, biocompatible	machining of Al alloys & non-ferrous metals machining of aluminum with <10% Si content titanium machining machining of fibreglass, nylon & polymer materials medical applications reduced galling	
;	SUPRAL	titaniumaluminium- nitride	3500 ± 500	<0.5	2 - 4	800°C	~ 450°C	black	2-3 WD	universal multilayer coat, high degrees of hardness, high oxi- dation resistance, low friction	excellent for die-cast machining drilling (with poor cooling, without interior cooling) very well suited for drilling & milling of steel up to 54 HRC	
\$	SISTRAL	aluminium- titaniumnitride based AlTiXN	3500 ± 500	0.7	2 - 4	900°C	~ 450°C	anthracite	2-3 WD	high-performance coating, extremely high oxidation resistance, high warm hardness & wear resistance	milling under extreme conditions dry high-speed machining high-performance cutting of very abrasive or hard materials (steel >54 to >62 HRC) non-corrosive steels suited for punches & inserts	
	SILVER	aluminiumtitanium- chromiumnitride AlTiCrN	3000 ± 300	0.4	2 - 4	800°C	~ 450°C	silver	2-3 WD	high degrees of hardness and wear resistance, excellent oxidation resistance, low coefficient of friction	machining of aluminium, Al alloys with SI content >10% & non-ferrous metals machining of abrasive materials or materials that tend to agglutinate (stainless steel, gray cast) universally usable for milling, drilling MOL or dry machining magnesium injection molding very well suited for inserts	
Р	LATINUM	aluminiumtitanium- zirconium- carbonnitride nano structure	3500 ± 500	0.7	2 - 4	900°C	~ 450°C	orange	2-5 WD	high-performance coat, composite of Sistral and ZrCN, excellent tribological properties	machining under extreme conditions high-performance machining of very abrasive materials inconel machining very well suited for inserts	
	BLUE	aluminium- chromium AICr based	3400	0.3	2 - 4	1000°C	~ 450°C	blue-purple	2-5 WD	very high degrees of hardness & wear resistance, excellent adhesion & stability	resistant all-round coat in interference colors new high-performance coat for multi-applications machining of steels 35 to >54 HrC stainless steel	
A	ALLTRON	aluminium- chromium AICr nanocomposite	3400	0.3	2 - 4	1000°C	~ 450°C	grey	2-3 WD	all-round high-performance coat, for use at extremely high temperatures, very high degree of fhardness, excellent oxidation resistance and adhesive quality	general high-performance machining universally applicable from 35 to >54 HRC milling, drilling dry machining punchining/stamping & forming, cutting stainless steel itlanium, super alloys die-cast, Al pressure die-cast	D
VERIEU VE	ISITRON	aluminium- titaniumsilicon AITiSi nanocomposite	3500	0.5	2-4	> 1200°C	~ 450°C	brown	2-5 WD	high-performance coat, extreme high operating temperature & coating adhesion, extreme hardness & stability, minimized internal stress & crack formation	high-performance machining hard milling hardened steels 54 HRC to >66 HRC	0
Y CON	DLC SLICOS	diamond- like-carbon CrDLC	2200 - 3500	0.08-0.1	1 - 3	350°C	max. 200°C	black- anthracite	2-5 WD	high micro-hardness, low coating temperature, low coefficient of sliding friction, excellent abrasive wear resistance, lowest tendency to adhesion	tribological applications (sliding layers) anti-corrosion & chemical resistance plastic injection molding, extrusion metal processing with soft materials (aluminium, brass, copper) medical technology, food industry components, Motorsport & Aerospace Industry optical refinement	0
	Ta:C	ta-C (tetra amorphous carbon thin film) hard carbon	6.000 – 8.000	0.1	0.2 – 2	550°C	< 200°C	black to rainbow	10 WD	high coat hardness, very smooth layer surface, low tendency to cold welding, low coefficient of friction, optimized layer thickness, high thermal stability	dry machining to MQL milling, drilling forming, punching/stamping emboss	8
DF	RAWTRON	chromiumwolfram- nitride CrWN	3000 ± 300	0.4	6-10	800°C	~ 450°C	silver	2-10 WD	high performance coat, protection against corrosive and abrasive attack by molten aluminum	for aluminum die casting, plastic injection molding and warm forming processing of corrosive or fiber-filled plastic melt	

* special:

DUPLEX possible

MICRO possible, <1

Number |

Numbe